

Pre-Feasibility Study Report of Grid Connected Solar PV project In Rajgadh Rural Municipality, Province 2

08 October 2021 NEPAL RENEWABLE ENERGY PROGRAMME (NREP) House No. 62, Mukti Marg Thapathali, GPO 46, Kathmandu 44600

Table of Contents

Sa	lien	t Features	2		
1.	In	itroduction	3		
2.	S	ite Location	5		
3.	Ρ	reliminary Project Design and Analysis	5		
:	3.1.	System Design	5		
:	3.2.	System Summary	7		
:	3.3.	Solar Module Placement	9		
:	3.4.	Energy Generation:	1		
4.	С	ost Estimate of the project1	5		
5.	. Preliminary Financial Analysis1				
6.	A	nnexure1	7		

Figure 1: Site location	5
Figure 2: Site Details	6
Figure 3: Tilt and azimuth considered for the design	
Figure 4:System Design	
Figure 5: Summary of Solar Panel and Inverter Configuration	
Figure 6: Power Evacuation route	
Figure 7: Top-view showing multiple sheds	10
Figure 8: Shading Analysis	
Figure 9: Iso Shading diagram for near shadings	11
Figure 10: Balances and output results	
Figure 11: Normalized Production	12
Figure 12: Normalized Production and Loss factors	12
Figure 13: Monthly Performance ratio of the plant	13
Figure 14: Loss Diagram	
Table 1: Cost Breakdown for the project	15

SALIENT FEATURES

S.N.	Heading	Particulars	Description
1	Plant Location	Proposed Site coordinate	26.47° N
			86.66° E
		Province	Province 2
		District	Saptari
		Local Government	Rajgadh
2 Accessibility Approx. distance from ro (meters)		Approx. distance from road-head (meters)	350
		Type of road-head	Highway
3	Land Profile	Ownership of Land	Municipality
4 Solar Resource, Solar Insc		Solar Insolation (kWh/sq.m./day)	5.42
	Capacity	Proposed project capacity(kW)	1000
		DC to AC ratio	1.11
		Capacity of each module (Wp)	400
		Approx. number of modules	25000
		Total Inverter Capacity (kW)	875
5	Substation	Name of nearest substation	Rajbiraj
		Approx. transmission distance (km)	10
		Transmission voltage (kV)	11
6 Electricity generation		Estimated annual energy generation (MWh/year)(@ P50)	1599
		LCOE (NPR/kWh)	5.64
7	Cost Estimate	Estimated Project Cost (NPR)	
8	Financial Findings	NPV (NPR)	21,967,409.2
		IRR (%)	17.79
		Payback period (Years)	8.16

1. INTRODUCTION

Nepal has significant potential for solar energy system. Nepal receives 3.6 to 6.2 kWh of solar radiation per square meter per day, with roughly 300 days of sun a year, making it ideal for solar energy. White paper 2018 has envisioned renewable energy in national energy mix for energy security and proposes 5-10% from renewable energy source for power generation mix. It aims for distributed generation in each of 753 local units - "Providing Energy Access to All Settlement". Under the concept of "One Province, One Mega Projects" the white paper recommends atleast 200 MW solar power generation in province no. 2. The 15th periodic plan depicts renewable energy as mainstream energy source. Public as well as private investment have been prioritized for the energy mixing strategy and for generating enough power to meet the demand for development and electricity services. 15th plan articulates that energy efficiency programs and programs to connect rooftop solar energy plants to the grid based on net metering and net payment will be promoted under the concept of "Every Home. Energy Home". The plan also puts forward the proportion of renewable energy in energy consumption to increase from 7 to 12 per cent and electricity consumption per capita to reach 700 kilowatts per hour. For the achievement of its target it offers development of solar energy system and its integration into national grid through the collection and verification of field data on solar energy sources. It also aims to establish and operate Special Economic Zones (SEZ), Industrial Zones, and Industrial Villages.

As per department of electricity development, all together 17 solar power projects with estimated generation capacity of 110.47 MW have received license so far for construction of solar projects. 3 projects of 17 MW capacity among others lies in province no. 2. Similarly, survey license has been issued to 34 projects with 495.32 MW capacity and Province 2 shares major fraction with 11 projects of capacity 340.2 MW. Likewise, 2 solar projects have applied for construction license and has capacity of 5 MW. Both the projects fall under territory of province no. 2. Also 3 projects with 120 MW capacity has applied for survey license and a project with 100 MW capacity belongs to Province 2. Recently, Butwal solar power with 8 MW capacity has been connected to national grid. Similarly, Nepal government utility inaugurated the first phase of its first 25MW solar array that will feed electricity directly into the national grid. The project employs solar panels without storage batteries, meaning electricity produced is fed directly into the grid when sunlight is available. As per the study carried out by national planning commission, the highest number and installed capacity of Solar PV sites in the country with cumulative capacity of 127 MW were selected in Province 2. The solar power helps to reduce power outages in winter seasons when hydropower potential is reduced. Furthermore, it is expected to increase the reliability of the power supply system and minimize system loss.

The Local Government Operation Act, 2074 that came into effect since 15 October 2017 has paved a strong legal foundation towards institutionalizing legislative, executive and quasi-judiciary practice of the local government. The Act has stipulated several arrangements related to authorities, duties and responsibilities of local government, assembly meeting and working system, assembly management procedures, plan formulation and implementation, judicial works, financial jurisdictions, administrative structure, and district assembly, among others. Without adversely affecting the universality of Schedule-8 of the Constitution, it clarifies the function, duties, and rights of municipalities/ rural municipalities. The act clearly states that the local government can formulate, implement, monitor, evaluate and regulate local level policies, laws, standards, and plans related to hydro power projects up to one megawatt. Further, the municipality can manage, operate, and regulate local electricity distribution system and services.

In the above background, Rajgadh Rural municipality has decided to set up a 1 MWp Solar Power Plant. The municipality lies in Saptari district under the Sagarmatha region of Eastern Nepal. B.S. The Ministry of Federal Affairs and Local Development has implemented 744 local levels in 2073 BS. The total area of Rajgad village municipality is 47.9 sq. Km. This village municipality is divided into 6 wards According to the 2068 census, the total population of this village municipality is 29,459 It is bounded on the east by Chhinmasta and on the west by Bishnupur, on the west by Dakneshwari, on the north by Rupni and on the south by Bihar (India). This Pre-Feasibility Report (PFR) brings out

all technical details and overall costs justifying the selection of the project. The total power generation is envisaged to be 1682.2 MWh from the plant. The total project cost is expected to be **NPR 82.08 Million** and the average cost of generation (LCOE) is expected to be **Rs. 5.64/kWh**.

Client' details					
Country	Nepal				
Location	Rajgadh RM, Saptari				
Coordinates	26.49° N and 86.66° E				
Contact Number	9801565113				
Contact Person	Paramanand Yadav				
Name of Client	Rajgadh Rural Municipality				
Purpose	Power generation & distribution to grid				

Site & Meteo Details					
Location coordinates	26.47°N, 86.66°E				
Ambient	Max Average Min				
Temperature(⁰ C)	31.10 26.0 15.4				
Relative humidity	67.1%				
Daily Solar irradiation- Horizontal	4.89 KWh/m²/day				
Atmospheric Pressure	101.325 kPA				
Wind Speed	1.6 m/s				
Altitude (from sea level)		60 m			

Project Details					
Type of installation	Ground-mounted				
Estimated array peak power	1000 kWp				
Shading consideration					
	Shade-free				
Grid voltage	11 KV				
Phase connection	3-phase				
	50Hz				
Grid frequency	15,000 m ² (approx)				
Available/required area	15,000 m (approx)				
	IP65				
Safety level					

2. SITE LOCATION

Figure 1: Site location

3. PRELIMINARY PROJECT DESIGN AND ANALYSIS

3.1. System Design

The global horizontal irradiation and horizontal diffuse radiation along with temperature, wind velocity, linke turbidity and relative humidity shown below are taken as the primary inputs for system design using PV Syst 7.1 software. (Annex 1: PV Syst Simulation report)

Rajgadh (Nepal)

Data source

Site

ujgudii (iicpui)

Meteonorm 7.3 (1991-2010), Sat=100% (Modified by user)

	Global horizontal irradiation	Horizontal diffuse irradiation	Temperature	Wind Velocity	Linke turbidity	Relative humidity
	kWh/m²/mth	kWh/m²/mth	°C	m/s	[-]	%
January	116.3	49.1	15.4	0.90	5.977	75.1
February	131.3	52.5	20.2	1.40	5.669	65.8
March	169.2	76.0	26.0	1.60	6.150	50.5
April	182.4	87.6	30.6	2.40	7.000	45.4
Мау	190.7	103.2	31.9	2.70	7.000	55.6
June	162.8	97.8	31.1	2.39	7.000	69.6
July	152.9	95.0	30.3	2.01	5.934	78.7
August	154.1	93.0	30.3	2.00	5.253	78.9
September	142.0	73.7	29.2	1.79	5.282	81.0
October	142.7	68.4	27.4	0.81	5.871	73.6
November	127.5	46.8	22.4	0.49	7.000	70.5
December	114.0	47.9	17.3	0.49	6.986	73.7
Year	1785.8	890.9	26.0	1.6	6.260	68.2

Global horizontal irradiation year-to-year variability 4.7%

Figure 2: Site Details

A project life of 25 years has been considered. The azimuth of 0^{0} (true south) the the fixed plane tilt angle of 35^{0} are assumed based on the optimization in regard to specific energy production for the site.

Figure 3: Tilt and azimuth considered for the design

3.2. System Summary

For preliminary design, Solar PV Modules from Jinkosolar has been selected. A total number of 2,500 "Jinko Solar JKM 400M-72V" monocrystalline PERC PV modules of 400 Wp rating, 35.35 Vmpp (at 60° C) and 19.88% efficiency has been considered to convert the solar energy into DC electricity. Seven units of Sungrow 125 kW "SG 125 HV" inverters which has internal MPPT system has been considered to convert DC to three phase.

Sub-array 😯							
Sub-array name and Orientation Name PV Array Orient. Fixed Tilted Plane Azimuth Azimuth	O No sizing O No sizing O No sizing O No sizing ····	Enter planned power					
Select the PV module Available Now Filter	04400M-72H-V Since 2020	Approx. needed modules 2500 Datasheets 2020 V Q Open					
Sizing voltages : Vmpp (60°C) 35.5 V Voc (-10°C) 54.9 V							
Select the inverter So Hz Available Now Output voltage 600 V Tri 50Hz Sungrow 125 kW 860 - 1450 V TL 50/60 Hz Since 2020 Q Open Nb. of inverters 7 Operating voltage: 860-1450 V Global Inverter's power 875 kWac Input maximum voltage: 1500 V "String" inverter with 1 inputs							
Design the array Number of modules and strings Ø Mod. in series 25 Image: Strings 100 Image: Strings <td< td=""><td>Operating conditions Vmpp (60°C) 888 V Vmpp (20°C) 1043 V Voc (-10°C) 1372 V</td><td></td></td<>	Operating conditions Vmpp (60°C) 888 V Vmpp (20°C) 1043 V Voc (-10°C) 1372 V						
Overload loss 0.0 % Show sizing ? Pnom ratio 1.14 Show sizing ? Nb. modules 2500 Area 5030 m ²	Isc (STC) 1036 A	O Max. in data Image: STC Max. operating power 913 kW (at 1000 W/m² and 50°C) 1000 kWp					

Figure 4:System Design

The operating voltage range of inverter is 860-1450 Vdc. Here it was considered that 25 number of modules will be connected in series to form a string. A total of 100 such strings will be connected in parallel to form an array with cumulative capacity of 1000 kWp. These 100 strings will be connected using string combiner boxes (SCBs). One main combiner box (MCB) will connect these SCBs together and transfer energy to the inverter. Thus, the AC rating of the plant will be 875 kW.

PV module		Inverter	
Manufacturer	Jinkosolar	Manufacturer	Sungrow
Model	JKM400M-72H-V	Model	SG125-HV
(Original PVsyst database)		(Original PVsyst database)	
Unit Nom. Power	400 Wp	Unit Nom. Power	125 kWac
Number of PV modules	2500 units	Number of inverters	7 units
Nominal (STC)	1000 kWp	Total power	875 kWac
Modules	100 Strings x 25 In series	Operating voltage	860-1450 V
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.14
Pmpp	913 kWp		
U mpp	928 V		
I mpp	984 A		
Total PV power		Total inverter power	
Nominal (STC)	1000 kWp	Total power	875 kWac
Total	2500 modules	Nb. of inverters	7 units
Module area	5030 m²	Pnom ratio	1.14
Cell area	4464 m²		

Figure 5: Summary of Solar Panel and Inverter Configuration

The output of the inverter pack will be connected to one number of 0.6/11 kV, 1.25 MVA, 3-phase step-up transformer and the generated AC power will be safely evacuated through 10 kms long 11 kV single-circuit transmission line to NEA's substation. Evacuation route is shown below:

Figure 6: Power Evacuation route

3.3. Solar Module Placement

Figure 7: Top-view showing multiple sheds

Placing 107 modules in landscape mode results in ideal physical size of 125 meters by 4.07 meters shed. This is known as shed or row of solar panels. The pitch, which is the ground clearance between adjacent sheds is optimized at 8.00 meters to allow for minimum inter-row shading on adjacent solar panels. This pitch will accommodate solar panels and mounting structures and also includes space for the inter-row space, which will also serve as the walking, cleaning and maintenance path as well as receive most of the shadows of the structures. Ground coverage ratio (GCR) is 50.8%.

Figure 8: Shading Analysis

Figure 9: Iso Shading diagram for near shadings

3.4. Energy Generation:

The plant will generate 1,599 MWh/year with specific yield of 1,599 kWh/kWp/year. The performance ratio is estimated to be 81.6%, Pnom ratio is designed to be 1.14, and the average near shading loss will be 2.42%.

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	116.3	49.1	15.37	161.0	153.0	144.4	139.4	0.866
February	131.3	52.5	20.20	165.8	158.1	145.6	140.6	0.848
March	169.2	76.0	25.96	189.4	179.9	161.6	151.0	0.797
April	182.4	87.6	30.59	182.9	172.7	152.3	139.2	0.761
May	190.7	103.2	31.87	176.2	165.3	146.1	141.0	0.800
June	162.8	97.8	31.13	145.0	134.9	120.5	116.1	0.801
July	152.9	95.0	30.27	138.0	128.2	115.2	110.9	0.804
August	154.1	93.0	30.25	147.4	137.6	123.6	119.1	0.808
September	142.0	73.7	29.16	149.4	140.5	126.4	121.8	0.816
October	142.7	68.4	27.38	169.4	160.5	145.4	140.4	0.829
November	127.5	46.8	22.37	173.2	165.4	151.5	146.1	0.844
December	114.0	47.9	17.25	161.1	153.3	143.9	133.5	0.829
Year	1785.8	890.9	26.00	1958.7	1849.4	1676.5	1599.3	0.816

Balances and main results	Balances	and	main	results
---------------------------	----------	-----	------	---------

Figure 10: Balances a	and output results
-----------------------	--------------------

Normalized productions (per installed kWp): Nominal power 1000 kWp

Normalized Production and Loss Factors: Nominal power 1000 kWp

Figure 12: Normalized Production and Loss factors

Performance Ratio PR

Figure 13: Monthly Performance ratio of the plant

Figure 14: Loss Diagram

4. COST ESTIMATE OF THE PROJECT

The detailed cost estimate breakdown of the project is given below:

S.N.	Detail of Cost	Cost (NPR)	% of total cost
1	Solar Modules	45000000	54.82%
2	Inverter and accessories	8400000	10.23%
3	Mounting structures	2994000	3.65%
4	DC Cable, Electrical Side	3992000	4.86%
5	SCADA, Weather Monitoring Station, Data logger	1300000	1.58%
6	All Civil Works, land leveling, fencing, control house with AC facilities	3500000	4.26%
7	DC side erection work	1197000	1.46%
8	Plant side substation, including transformer	2495000	3.04%
9	Supply of Transmission Line(11kV)	4680000	5.70%
10	Erection of 11 kV line	1105000	1.35%
11	Spares of Solar Modules (0.20%)	900000	1.10%
12	Transportation	1197600	1.46%
13	DPR Preparation Cost	1200000	1.46%
14	Custom and Duties	1996000	2.43%
15	Project Insurance	767606	0.94%
16	Social Mitigation Expenses	30000	0.04%
17	Contingency	1327660	1.62%
	Total Cost	82,081,866	100%

Table 1: Cost Breakdown for the project	reakdown for the proiect
---	--------------------------

5. PRELIMINARY FINANCIAL ANALYSIS

Assumptions:

- Project operation lifetime: 25 years
- Capital Cost per kWp: 82,081.66 NPR
- Equity to Debt ratio: 30:70
- Loan Interest rate: 9%
- Loan Tenure: 7 years
- Discount rate: 10%
- Capacity Utilization Factor (CUF): 18.25%
- Annual Energy Degradation: 0.50%
- Annual O&M cost: 1% of capital cost
- Annual O&M escalation: 3%
- Inverter Lifetime: 10 Years
- PPA rate: NPR 7.30/kWh
- Depreciation: 5% over 20 years
- Salvage Value: 0

Findings:

- IRR:15.08%
- NPV:74,619,690.60
- Payback Period:9.15 years
- LCOE:5.64 Rs/kWh

6. ANNEXURE

Version 7.1.8

PVsyst - Simulation report

Grid-Connected System

Project: Grid Connected solar Project in Rajgadh

Variant: New simulation variant Sheds, single array System power: 1000 kWp Rajgadh - Nepal

> Author DAI Europe Ltd. - NREP (Nepal)

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

Geographical Site	Situation		Project setting	s
Rajgadh	Latitude	26.50 °N	Albedo	0.20
Nepal	Longitude	86.67 °E		
	Altitude	0 m		
	Time zone	UTC+5.5		

Meteonorm 7.3 (1991-2010), Sat=100% - Synthetic

		System	summary —	
Grid-Connected	System	Sheds, single arr	ay	
PV Field Orienta Fixed plane	tion	Near Shadings According to strings		User's needs Unlimited load (grid)
Tilt/Azimuth	30 / 0 °	Electrical effect	100 %	
System informat	tion			
PV Array			Inverters	
Nb. of modules		2500 units	Nb. of units	7 units
Pnom total		1000 kWp	Pnom total	875 kWac
			Pnom ratio	1.143

Results summary

Produced Energy 1599 MWh/year Specific production 1599 kWh/kWp/year Perf. Ratio PR 81.6	5 %
---	-----

Table of contents	
Project and results summary	2
General parameters, PV Array Characteristics, System losses	
Near shading definition - Iso-shadings diagram	
Main results	7
Loss diagram	
Special graphs	9
P50 - P90 evaluation	10

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

Project: Grid Connected solar Project in Rajgadh

Variant: New simulation variant

DAI Europe Ltd. - NREP (Nepal)

		General param	neters –		
Grid-Connected	System	Sheds, single array			
PV Field Orienta	tion				
Orientation		Sheds configuration		Models used	
Fixed plane		Nb. of sheds	10 units	Transposition	Perez
Tilt/Azimuth	30 / 0 °	Single array		Diffuse Per	ez, Meteonorm
		Sizes		Circumsolar	separate
		Sheds spacing	8.00 m		
		Collector width	4.07 m		
		Ground Cov. Ratio (GCR)	50.8 %		
		Top inactive band	0.02 m		
		Bottom inactive band	0.02 m		
		Shading limit angle			
		Limit profile angle	24.6 °		
Horizon		Near Shadings		User's needs	
Free Horizon		According to strings		Unlimited load (gr	id)
		Electrical effect	100 %		

PV Array Characteristics					
PV module		Inverter			
Manufacturer	Jinkosolar	Manufacturer	Sungrow		
Model	JKM400M-72H-∨	Model	SG125-HV		
(Original P∀syst database	•)	(Original P∀syst database)			
Unit Nom. Power	400 Wp	Unit Nom. Power	125 kWac		
Number of PV modules	2500 units	Number of inverters	7 units		
Nominal (STC)	1000 kWp	Total power	875 kWac		
Modules	100 Strings x 25 In series	Operating voltage	860-1450 V		
At operating cond. (50°C)		Pnom ratio (DC:AC)	1.14		
Pmpp	913 kWp				
U mpp	928 V				
I mpp	984 A				
Total PV power		Total inverter power			
Nominal (STC)	1000 kWp	Total power	875 kWac		
Total	2500 modules	Nb. of inverters	7 units		
Module area	5030 m²	Pnom ratio	1.14		
Cell area	4464 m ²				

Array Soiling Losses		Thermal Loss factor		DC wiring losses	
Loss Fraction	1.5 %	Module temperature	e according to irradiance	Global array res.	16 mΩ
		Uc (const)	29.0 W/m ² K	Loss Fraction	1.5 % at STC
		Uv (wind)	0.0 W/m ² K/m/s		
LID - Light Induce	d Degradation	Module Quality L	oss	Module mismatch I	osses
Loss Fraction	1.5 %	Loss Fraction	-0.8 %	Loss Fraction	0.2 % at MPI
Strings Mismatch	loss				
Loss Fraction	0.1 %				

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

	tor							
M loss fac		AR coating n(g)	ass)=1.526, n(AR)	=1 290				
		/itteedanig, h(gi	10020, m(/ m)	1.200				
0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000
ectral cor	rection							
stSolar mod								
stSolar mod		om relative humic	iity					
stSolar mod		om relative humic	iity	1				
stSolar mod	ater estimated fro	om relative humic	C1	C2	(03	C4	C5

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

System losses

	AC wiring losses	
Inv. output line up to M	/ transfo	
Inverter voltage	600 ∀ac tri	
Loss Fraction	1.0 % at STC	
Inverter: SG125-HV		
Wire section (7 Inv.)	Alu 7 x 3 x 120 mm ²	
Average wires length	100 m	
MV line up to Injection		
MV Voltage	11 kV	
Wires	Copper 3 x 185 mm ²	
Length	10000 m	
Loss Fraction	0.8 % at STC	
	AC losses in transformers	

AC losses in transformers		
MV transfo	44 157	
Grid Voltage Operating losses at STC	11 kV	
Nominal power at STC (PNomac)	989 kVA	
Iron loss (24/24 Connexion)	0.99 kW	
Loss Fraction	0.1 % at STC	
Coils equivalent resistance	3 x 3.09 mΩ	
Loss Fraction	0.9 % at STC	
Edde i faction		

P√syst Licensed to DAI Europe Ltd. - NREP (Nepal)

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

Legends

GlobHor	Global horizontal irradiation
DiffHor	Horizontal diffuse irradiation
T_Amb	Ambient Temperature
GlobInc	Global incident in coll. plane
GlobEff	Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array E_Grid

Energy injected into grid

Performance Ratio

PR

PVsyst Licensed to DAI Europe Ltd. - NREP (Nepal)

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

Loss diagram 1786 kWh/m² Global horizontal irradiation +9.7% Global incident in coll. plane -2.42% Near Shadings: irradiance loss -1.76% IAM factor on global Ы ⇒ -1.50% Soiling loss factor 1849 kWh/m² * 5030 m² coll. Effective irradiation on collectors efficiency at STC = 19.95% PV conversion 1856 MWh Array nominal energy (at STC effic.) 9-0.52% PV loss due to irradiance level -7.32% PV loss due to temperature Spectral correction +0.25% →-0.22% Shadings: Electrical Loss acc. to strings **« +0**.75% Module quality loss -1.50% LID - Light induced degradation **≻ -0**.30% Mismatch loss, modules and strings 9-1.00% Ohmic wiring loss 1677 MWh Array virtual energy at MPP 9-1.52% Inverter Loss during operation (efficiency) ₩0.00% Inverter Loss over nominal inv. power + 0.00% Inverter Loss due to max. input current ♦ 0.00% Inverter Loss over nominal inv. voltage ₩0.00% Inverter Loss due to power threshold ₩0.00% Inverter Loss due to voltage threshold →-0.01% Night consumption 1651 MWh Available Energy at Inverter Output ₩0.00 Auxiliaries (fans, other) 9-0.56% AC ohmic loss Medium voltage transfo loss \$-0.99% +-0.46% MV line ohmic loss \$-1.14% System unavailability 1599 MWh Energy injected into grid

Variant: New simulation variant

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

DAI Europe Ltd. - NREP (Nepal)

P√syst Licensed to DAI Europe Ltd. - NREP (Nepal)

Page 9/10

Variant: New simulation variant

DAI Europe Ltd. - NREP (Nepal)

PVsyst V7.1.8 VC0, Simulation date: 27/09/21 10:58 with v7.1.8

P50 - P90 evaluation Simulation and parameters uncertainties Meteo data Meteo data Islautecanorm 7.3 (1991-2010), Sat=100% 1.0 % PV module modelling/parameters Kind TMY, multi-year Inverter efficiency uncertainty 0.5 % Year-to-year variability(Variance) . 4.8 % Soiling and mismatch uncertainties 1.0 % 1.0 % Specified Deviation Degradation uncertainty Climate change 0.5 % Global variability (meteo + system) Annual production probability 5.1 % Variability (Quadratic sum) Variability 82.4 MWh P50 1607.3 MWh P90 1501.6 MWh P75 1551.7 MWh Probability distribution 0.50 0.45 P50 = 1607 MWh 0.40 E_Grid simul = 1599 MV 0.35 P75 = 1552 MWh 0.30 Probability 0.25 0.20 P90 = 1502 MWh 0.15 0.10 0.05

0.00 1300

PVsyst Licensed to DAI Europe Ltd. - NREP (Nepal)

1600

E_Grid system production MWh

1700

1800

1900

1500

1400